On interior layers for integral equations
نویسندگان
چکیده
منابع مشابه
SPLINE COLLOCATION FOR NONLINEAR FREDHOLM INTEGRAL EQUATIONS
The collocation method based on cubic B-spline, is developed to approximate the solution of second kind nonlinear Fredholm integral equations. First of all, we collocate the solution by B-spline collocation method then the Newton-Cotes formula use to approximate the integrand. Convergence analysis has been investigated and proved that the quadrature rule is third order convergent. The presented...
متن کاملImpedance boundary condition for vector potentials on thin layers and its application to integral equations
Thin layers of magnetic substance are often used in magnetic shieldings. Since the scale of the spatial change in electromagnetic fields in the direction of the thickness of such a thin layer is considerably different from that in the transverse directions, the numerical treatment of the interior electromagnetic fields is formidable. In this paper, it is shown that the impedance boundary condit...
متن کاملglobal results on some nonlinear partial differential equations for direct and inverse problems
در این رساله به بررسی رفتار جواب های رده ای از معادلات دیفرانسیل با مشتقات جزیی در دامنه های کراندار می پردازیم . این معادلات به فرم نیم-خطی و غیر خطی برای مسایل مستقیم و معکوس مورد مطالعه قرار می گیرند . به ویژه، تاثیر شرایط مختلف فیزیکی را در مساله، نظیر وجود موانع و منابع، پراکندگی و چسبندگی در معادلات موج و گرما بررسی می کنیم و به دنبال شرایطی می گردیم که متضمن وجود سراسری یا عدم وجود سراسر...
A review on singularly perturbed differential equations with turning points and interior layers
Singular perturbation problems with turning points arise as mathematical models for various physical phenomena. The problem with interior turning point represent one-dimensional version of stationary convectiondiffusion problems with a dominant convective term and a speed field that changes its sign in the catch basin. Boundary turning point problems, on the other hand, arise in geophysics and ...
متن کاملNonlinear Integral Equations for Shape Reconstruction in the Inverse Interior Scattering Problem‡
In this paper, we consider the inverse scattering problem of recovering the shape of a perfectly conducting cavity from one source and several measurements placed on a curve inside the cavity. Under restrictive assumptions on the size of the cavity, a uniqueness theorem for finitely many excitations is given. Based on a system of nonlinear and ill-posed integral equations for the unknown bounda...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Methods and Applications of Analysis
سال: 1994
ISSN: 1073-2772,1945-0001
DOI: 10.4310/maa.1994.v1.n3.a3